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INTRODUCTION

A residue test is a convenient
means for determining the essential
literals (Quine, 1952) in the trans-
mission function deseribing the elee-
trical properties of a two-terminal
combinational switching circuit
(Shannon, 1949), and thus indicates
which literals are absolutely neces-
sary in a realization of the switch-
ing cireuit.

The residue test is based upon a
pair of identities of the Boolean al-
gebra related by duality (Birkhoff
and MacLane, 1953). These identi-
ties are 1 and 1’ below.

The validity of these identities
follows immediately by using the
method of perfect induction with re-
spect to the variable z;. Note: ‘4’

(1) T (2 *

* % Liens TpoyTro-xy

(sum) is used instead of ““U’’ (cup),
‘.77 (produet) instead of ‘07’
(cap) and a prime (complement)
instead of ‘“~"’ (negative).

For the purpose of brevity defini-
tions (2, below) are made.

Hence T’y merely denotes the orig-
inal T with the particular variable
rp in the I state and similarly T,
denotes the original 7 with the par-
ticular variable z; in the O state.

With the definitions given by the
identities of (2), the identities given
by (1) and 1’) become, respectively,
3 and 37, below.

At this point, we define Ty, and
T, to be the residues of 7 with re-
spect to x; and z;’, respectively.

In what follows, if no composition
law is given, the composition ““.”’
(product) is implied. Example 1.
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Inspeet z,* for its necessary ap-
pearance in T.

T=a, Ty + 2 Tos

T = o, [@) @ @ + &5 T To + 5 T2 0]
+ @/ L5 @ 2]

T = z,[% ) 4 @5 €, X)) + @ (2 %, z,]

T = @y Ty Ly + X5 By Lo

This indicates that the literal z’;
is unnecessary in a representation
of T, since it combined with z; ae-
cording to the identity

@, Ty + Ty T =

(iven any transmission function
T, the results of the residue test
obtained by means of applying the
identities given by (3) can be sum-
marized. The results of the residue
test obtained by means of applying
the identities given by (3") is equiva-
lent and need not be carried out here.

Case 1:
T = Top+ 0 Tow = T = T

Here neither z; nor zi” is neeces-
sary for a realization of T.

Case 2:

@) Ty O Tu,Ty is said to contain
Ty; that is, Ty == Ty, but if Ty, = 1 then
Ty = 1. TUnder the condition, Tu
Ty == Ty and Ty, + Ty, = Ty There-
tore, T = o, Ty + @ Tor = &5 (Tor +
To) + @ Ty T =2 T + T
Hence z;,” is not necessary for a realiza-
tion of 7.

) Ty DO T Ta is said to contain
Tp; that is, Ty == Ty but if Ty == 1
then 7,, == 1. By reasoning similar to
case (2a), the variable z; is not neces-
sary in a realization of 7.

Case 3:

Neither of the above cases. For this
case no reduction in the number of
literals is possible and hence both %z, and
x, are necessary in a realization of 7.

In general, it can be stated that
the literal which is the coefficient of
a residue that is contained in the
other residue is not necessary in a
realization of 7.

A more fundamental approach to
the problem of residue evaluation,
and one that eventually leads to a
complete residue test by means of
a few simple rules, is based upon a
matrix of combinations for 7.

(Hven a transmission funetion T,
we can construct a matrix, from the
(n--1) variables of T, with (n+1)
columns and 2(*+1) rows such that
one variable heads each column and
each row is one of the 2(*+1 pos-
sible states of the variables, taken
collectively. Pre-angment the matrix
by a d-column that has for elements
lying in a given row of the original
matrix, the decimal equivalent of
the binary number representation of
that row. Post-augment the latter
matrix with a T-column that has for
elements in a given row of the orig-
inal matrix the state of 7' corre-
sponding to the state of the variables
agrecing with that row of the matrix.

Using the above procedure, exam-
ple 1 becomes the following matrix:

a T, X, z, L, T
0 0 0 0 0 0
/ 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 0
10 1 0 1 0 0
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 1

In general, the matrix of combina-
tions will be a 2»+x (n-3) matrix.

If p of the elements in the T-col-
umn are in the 1 state the 2+1—p
of the elements in the 7-eolumn are
in the 0 state. Disregard the rows
of the matrix of combinations that
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have a 0 in the 7-column. Nothing
is lost by doing this since we know
the states of @,,"* *,z, for which 7 =
1 and 7 must be 0 for all other states
of z,," "', At this point a pz
(n—+3) matrix remains. In example
1 this matrix becomes:

a Ly @z, @, Z, T
2 0 0 1 0 1
6 0 1 1 0 1
13 1 1 0 1 1
15 1 1 1 1 1

If g of the elements of the px
(n-+3) matrix have a 1 in the z; col-
umn, where x; is the variable being
tested for necessary appearance in a
representation of 7, then (p-¢) of
the elements in the z; column are 0.
Shift the rows of the px (n-+3) mat-
rix so as to partition it into ¢ rows
with all 7’s in the #; column and the
remaining (p-¢) rows with all 0’s
in the z; column.

In example 1 this matrix is (upon
inspecting the z; eolumn) :

a Zs z, z; Z, i
2 0 0 1 0 1
6 0 1 1 0 1
15 1 1 1 1 1
13 1 1 0 1 1

By disregarding the z; column of
the partitioned matrix, since the nec-
essary appearance of z,¥ is being
tested, it is seen that

Ty =o' e 2’ 4 xf a2/ + 75 2, 2,
and.

Ty = x5 2, o,
where T';; and 7,, have as many
terms as there are rows in the par-
titioned matrix with 1’s and 0’s re-
spectively, in the z; column. Each
term of Ty, and T,; corresponds to
a row of the partitioned matrix and
is composed of the product of all the
variables except z,, with the variable
unprimed if a 7 is in the column cor-

responding to the particular variable
and with the variable primed if a 0
is in the column corresponding to
the particular variable. By using
the results of case 2 of the residue
test given previously, it is seen that
no z;” literal is neeessary in a real-
ization of 7.

In general, T;; and Ty, can be
formed when the partitioned px
(n—+3) matrix is found from a spee-
ified 7. By applying the cases of
the residues test to T and Ty, the
unnecessary literals, if any, can be
found.

A compact and precise expression
for representing the T given in ex-
ample 1 is 3 (2,6,13,15). That is,
T is specified by the sequence of
decimal integers for those rows of
the matrix of combinations for
which 7 = 1. This is called the
standard sum form of 7.

Example 2:

T (25 g %1, ,) = = (1}) = 4 Ty £ @)

At first sight, the latter procedure
may appear quite lengthy. How-
ever, this is not actually the case.
The Iength is due to two causes:
1) an introduction to the fundamen-
tal theory with its nomenclature,
mechanics and many details which
with a little practice can become au-
tomatic; and 2) lack of a quick
knowledge regarding whether a 0
or a 1 occeurs in a particular row of
the px (n43) matrix corresponding
to the z; column.

Now a procedure will be devel-
oped which circumvents the need to
use the binary representation of 7T
and which allows the direct results
from the decimal specification of T
alone; and in fact, does away with
the need for a conversion table from
decimal to binary numbers in order
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to effect the location of the 7’s and
0’s when given the decimal number.

DECIMAL PROCEDURES

Consider a Boolean function 7 of
(n-+1) variables, expressed by T =
3 (D), where D is the set of decimal
integers representing the rows of the
matrix of combinations for which
T 1.

The decimal integer d will be said
to contain 2% in its binary number
representation if b 1 in the fol-
lowing identity :

k

b, 2%
1

n
p>
If ¢ is a real number let [a] de-
note the greatest integer not exceed-
ing a. Under the above conditions:
lemma: 'The decimal integer d
contains 2% in its binary number rep-
resentation if and only if [d - 2—F]
is odd. The proof of the lemma is
given in appendix I.
Example 3:
Liet us see if 78 contains 4 in its
binary number representation.

[—] = [19%] = 19 which is odd.
22

Therefore 78 does contain 4 in its
binary number representation. In
fact, 78 s 1 0 01 1 1 0 in binary
form, where the 1 in the third posi-
tion from the right indicates the
presence of a 4.
Example 4:

Let us see if 105 contains 4 in its
binary representation.

105
[_;w] = [2614] == 26 which is even.

Example 5:
T (2, @35, @y 1 ) = = (2, 8, 4, 5, 6
where, of course, D = 2, 3, 4, 5, 6, 7,

17

Therefore 105 does not contain 4 in
its binary representation. In fact,
105is 110100 1 in binary form,
where the 0 in the third position
from the right indicates the absence
of a 4.

By means of the above lemma, it
is possible to rapidly determine
whether or not a given integer con-
tains 2% in its binary representation.
It is convenient to define p; =
[d + 27*] as the placement quotient
(pq) of d with respect to 2%, where
deDinT =3 (D).

The decimal procedure for per-
forming a residue test is the follow-
ing:

(A) Let D’ denote the subset of I}
with odd p¢’s. Associate x, with the set

D’. Let D” denote the subset of D with
even pq’s. Associate 2, with the Set D”.

(B) Add 2* to each member of D”.
Call this set D. (Equivalently
subtract 2* from each member
of D'. Call this set D.)
Examine D’ and D for inclusion
relations. (Xlquivalently exam-
ine D” and D for inclusion rela-
tions). By the above procedure,
T has been put in the form of
the identity given by (3).

If

(C)

(D) _
D> D
or D D D7
then z,” is not necessary in a
realization of 7. If
Do D
or .
Dlﬁ :) D
then z, is not necessary in a
realization of 7.

Exanmple 5: (See below).

Check the leading and trailing
variables (z, and z,, respectively.
in this example) first, since they are
tested almost by inspection.

, 7, 12, 13, 22, 23, 30, 31)

12, 13, 22, 23, 30, 31
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(1) Checking z,* first:

a d a
[—] = [—] = [—1], deD.
ok o4 16
d
each d < /6 gives [—] -= 0, even pg
16
d
each d > 16 gives [—] == [, odd pq.
- 16

hence D’ == 22, 23, 30, 31

and D” = 2,3, 4,5, 6,7, 12, 13
2
DA

also D = 18. 19, 20, 21, 22, 23, 28, 29

Since D’ D D and D P D7, Case
3 of the residue test holds. There-
fore both 2z, and z,” are necessary
in a realization of 7. (Comparing
D" and D one gets the same results).

(8, Checking z,* next:

d a
[—] = [—] == d. deD.
W& +0

Hence D’ == 8, 35,7, 13, 23, 81
and D” = 2, }, 6, 12, 22, 30
also D =8, 5,7, 12, 23, 81
and D =2, }, 6, 12, 22, 30

Since D’ = D, Case 1 of the resi-
due test holds and neither z, nor z,”
are necessary in a realization of T.
(Comparing D” and D one gets the
same results).

(3) Checking x,* next:
d d d
[—]1 = [—] = [—],deD.
Kk 3 8
Hence D’ = 12, 13, 30, 31
and D” = 2,8, 4, 5,6, 7, 22, 23
also D = 10, 11, 12, 13, 14, 15, 30, 31
and D = }, 5, 22, 23

Since only D D D’, Case 2 of the
residue test holds. Since D’ is as-

sociated with zj, x; Is not necessary
but z;” is necessary in a realization
of 7.

(4) Checking z,* next:

d d d
[—1 =[—] = [—1, deD.
§s 2 }

Hence D = 4, a, 6, 7, 12, 1.3, 22, 23, 30,
31

and D" = 2,3

also D = 6,7

and D ==0,1,2, 3,8 9,18, 19, 26,27

Since D’ D D, Case 2 of the
residue test holds. Since D is asso-
ciated with z,’, »,” is not necessary
but z, is necessary in a realization
of T.

(5) Checking x,* next:

a d a
[—1 = [—] = [-—], deD.
K N 2

Hence D’ == 2, 3, 6,7, 22, 23, 30, 31
and D” = 4, 5, 12, 13

also D == 6,7, 1}, 15

and D =0, 1.}, 35,20, 21, 28, 2

Since [V D D and D D D', case
3 of the residue test holds and both
2, and x,” are necessary in a real-
ization of 7.

APPENDIX 1
Theo: P, = 0, (mod B), k== 1,2,..1

Proof: d = C, B* + ... + O, B!
4 CWBF + O B 4+ L+ G

a n—=k k
— = Z CuB' 4+ 0+ 2 O B
Bk i=1 i=1
k
Put f, = = O, B'; since

i=1
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max C,_; = B—I, then
k

0 < fi < (B—1) = B
i==1

Hence for every finite k

0
0 < fHh < (B—1I) 3 B'=
i—1
1
B
(Beei) e — 1
—1
B
n—=~k
Putting 8, == » (... B notice that
i=—=1

8, = B -8,., hence

d
Py o= [’y‘] =8 + 0, =B S+ 0
B

Theretore P, = O,

(mod B).

APPENDIX IT

If 7" is expressed in standard prod-
uct form (in terms of the zeros of
transmission) as

T =z (D);

where D is the set of decimal integers
representing the rows of the matrix
of combinations for which T = O,
it is only necessary to interchange
the association of z; and z;” relative

to D’ and D" to effect a residue test.
The inclusion relations then follow
as before.

SUMMARY

For reasons of economy it is ad-
vantageous to synthesize switching
circuits with as few components as
possible.  This paper develops a
decimal procedure which serves as a
necessary condition for realizing a
minimum-component circuit. Thus,
if a circuit is found, with the speci-
fied logical properties, using only the
number of components defined by the
procedure, it is known that one could
not realize any circuit with the speci-
fied logical properties using fewer
components. In this sense, a lower
bound to the number of components
needed in the realization of a cir-
cuit with specified logical properties
18 established.
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