Carotenoids in Certain Lichens from the State of Illinois

Bazyli Czeczuga
Department of General Biology
Medical Academy
15-230 Bialystok, Poland

Gerould Wilhelm
The Morton Arboretum
Lisle, Illinois 60532 USA

1Part 40 in the series "Investigation on Carotenoids in Lichens"

ABSTRACT

Column and thin-layer chromatography revealed the presence of the following carotenoids in the thalli of 21 lichen species from Illinois: α-, β-carotene, rubixanthin, β-cryptoxanthin, lutein, 3'-epilutein, zeaxanthin, lycoranthin, lycopene-5,6-epoxide, β-carotene epoxide, β-carotene diepoxide, lutein epoxide, antheraxanthin, violaxanthin, mutatoxanthin, α-doradoxanthin, astaxanthin, neoxanthin, and rhodoxanthin. The total content of carotenoids ranged from 26.15 (Puncteliabiddena) to 106.21 μg g⁻¹ dry weight (Phaeophyscia rubropulver).

INTRODUCTION

During the last 20 years, considerable progress has been made in studies of the species composition of lichens in Illinois (Skorepa & Snider 1967, Wiedman & Whiteside 1975, McClain 1978, Skorepa 1970, 1973a, 1973b, 1977, Wilhelm and Ladd 1985, Wilhelm and Lampa 1987, McNight et al. 1987, and Wilhelm & Parker 1988). In some of these studies attention was paid, not only to the geographical distribution of the various species, but also to their biology and the biochemical content of some lichen products which are important factors in taxonomic research. While reference has been made to the organic acids, terpenes, anthraquinones, etc., none of these works addressed the presence of carotenoids. In view of the fact that in the chemotaxonomy of fungi (Valadon 1976) and algae (Weber and Wettern 1980, Liaaen-Jensen 1989) the presence of carotenoids is taken into consideration, we decided to investigate the carotenoid content of the thalli of lichens from Illinois in order to find new data which would give a fuller picture of the characteristics of this group of plants.
MATERIALS AND METHODS

The 21 lichen species studied from Illinois, U.S.A. were collected in November-December, 1988. The location, voucher number, and substrate of each of these species are presented in Table 1.

Carotenoid pigments were extracted with 95% acetone in a darkroom. Saponification was carried out with 10% KOH in ethanol in a nitrogen atmosphere at approximately 20°C for 24 hours in the dark. Column and thin-layer chromatography (Czeczuga 1980) were used for the separation of various carotenoids. A 15-20 cm X 1 cm glass column (Quickfit, England) packed with Al₂O₃ was used for column chromatography. The extract was passed through the column and the different fractions were eluted with petroleum ether and acetone. Silica gel was used for thin-layer chromatography (TLC), with benzene-petroleum ether-acetone (10:2.5:2) as the solvent system. Rₐ values were determined for each spot. For identification of the thallus carotenoids, standards (Hoffman-La Roche and Co., Ltd., Basel, Switzerland, and Sigma Chemical Co., USA) were co-chromatographed with the lichen extracts.

The carotenoids were identified according to: (a) their behavior in column chromatography; (b) their absorption spectra in various solvents as recorded on a Beckman 2400 DU spectrophotometer; (c) the partition characteristics between hexane and 95% methanol; (d) a comparison of Rₐ values in TLC; (e) the presence of allylic hydroxyl groups as determined by the acid-chloroform test; (f) the epoxide test; (g) the mass spectrum; and (h) their infrared spectrum (Vetter et al. 1971 for basic methodology) were recorded by a Specord M-80 Carl Zeiss, Jena. Quantitative determinations of the concentrations of carotenoid solutions were made from the absorption spectra. These determinations were based on the extinction coefficient (E 1% cm⁻¹) at the wavelengths of maximal absorbance of petroleum ether or hexane (Davies 1976).

Structure of carotenoids was given (Figure 1) according to Straub (1987). Nomenclature follows Egan (1987). Voucher specimens are identified by the Wilhelm collection number in Table 1 and housed at the Morton Arboretum Herbarium (MOR), Lisle, Illinois.

RESULTS

In the thalli of 21 lichen species, the presence of 19 carotenoids was determined. Apart from the commonly found carotenoids, some of particular interest were noted: rubixanthin (Physcia millegrana), lycopene-5,6-epoxide (Phaeophyscia rubropulchra, Physcia stellaris, and Punctelia perreticulata), β-carotene diepoxide (Phaeophyscia rubropulchra), β-carotene epoxide and rhodoxanthin (Xanthoparmelia somloënsis). The predominant carotenoids were zeaxanthin (3 species), β-carotene diepoxide (1 species), lutein epoxide (7 species), violaxanthin (4 species), mutatoxanthin (5 species), and α-doradexanthin (2 species). The total carotenoid content in the thalli of the species studied ranged from 26.15 (Punctelia bolliana) to 106.21 μg/g dry weight (Phaeophyscia rubropulchra). A list of all the carotenoids found and their distribution in the 21 lichen species is given in Table 2.
DISCUSSION

Of the findings in this study, the most noteworthy was that of the presence of β-carotene diepoxide which was the predominant carotenoid in thalli of *Placophrisub patula*ina. This is the first report of the presence of this carotenoid in lichens (Czeczuga 1988a). Previously, it had been found in the anthers, filaments, and petals, as well as the fruit of numerous species of flowering plants (Goodwin 1980). The carotenoids rubixanthin, β-carotene epoxide and rhodoxanthin have been found rarely in lichenized fungi. Rubixanthin, among others, has been found in the thalli of the *Cetraria leuconota*, from the Kamchatka Peninsula (Czeczuga et al. 1989a), whereas β-carotene epoxide has been found in the thalli of *Ramalina pellucida*, from Bulgaria (Czeczuga 1988b) and in *Nephroma arcticum*, *Solorina crocea*, *Sphaerophorus globosus*, *Thamnolia vermicularis*, and *Ustrea sulphurea* from Austria (Czeczuga & Otlech 1990). Rhodoxanthin, among others, was noted in the thalli of a few species of *Parmelia* (s.l.) from Italy (Czeczuga et al. 1989b).

In this study, β-carotene and lutein epoxide were present in the thalli of all of the species evaluated. In general, it would appear that the genera and species of lichenized fungi have suites of carotenoids in common, but that these common suites are by no means exclusive to either general or species and common carotenoids do not necessarily imply a close relationship. The specimens of *Parmelia sulcata* and *Peltigera canina* examined in this study, for example, had the same suite of carotenoids, even though the phycobiont of *Parmelia* is green and that of *Peltigera* is blue green.

The carotenoids common to the seven species of *Cladonia* in this study were β-carotene and lutein epoxide, and antheraxanthin, zeaxanthin, and mutatoxanthin, though the latter three were absent in two *Cladonia* specimens from Austria (Czeczuga & Otlech 1990). Where two *Cladoniae* from the Canary Islands (Czeczuga et al. 1988) were compared to the seven *Cladoniae* from Illinois, only β-carotene and lutein epoxide were in common.

The carotenoids common to the three species of *Physcia* were β-carotene, lutein epoxide, lutein, zeaxanthin, and violaxanthin. *Peltigera canina* from Illinois had six carotenoids in common with *P. horizontalis* collected in Ireland (Czeczuga & Richardson 1989): β-carotene, lutein epoxide, β-cryptoxanthin, lutein, antheraxanthin, and violaxanthin, though only β-carotene, lutein epoxide, and violaxanthin were in common with two species from Austria (Czeczuga & Otlech 1990).

There is also variation with respect to carotenoid composition within a species. *Parmelia sulcata* from Illinois, for example, contained the same four carotenoids found in *P. sulcata* collected in Finland (Czeczuga and Skult 1988), but with β-carotene, lutein, and antheraxanthin in addition, perhaps as accessory pigments. β-carotene, lutein epoxide, lutein, antheraxanthin, and violaxanthin occurred in the thalli of four species of *Punctelia*, a segregate of *Parmelia*. In another segregate of *Parmelia*, the carotenoids β-carotene, lutein epoxide, lutein, β-epilutein, antheraxanthin, violaxanthin, and mutatoxanthin were all noted in the thalli of the two species of *Flavoparmelia*, but zeaxanthin was absent from *F. caperata*.

It is apparent that much more survey work among the genera and species, replicated by analysis of specimens of the same species from different areas, must be done before it is clear how important carotenoid analysis will be in lichen taxonomy. The *Parmeliaceae*,
as well as most other groups of lichenized fungi, is in an active state of generic
evaluation (Adler 1990). As genera and subgeneric relationships are explored, it is
possible that carotenoid content might be of value in making these evaluations.

LITERATURE CITED

Adler, M. T. 1990. An artificial key to the genera of the Parmeliaceae (Lichenes,
Czeczuga, B. 1980. Investigations on carotenoids in Embryophyta. I. Bryophyta. The
Bryologist 83:21-31.
Czeczuga, B. 1988b. Investigations on carotenoids in lichens. XXII. Lichens from the
Czeczuga, B. and M. Olech. 1990. Investigation on carotenoids in lichens. XXV. Studies of
Fennici 25:229-232.
Czeczuga, B. and D. H. S. Richardson. 1989. Carotenoids in some lichen species from
Czeczuga, B., S. Caccianese, and M. V. Passadore. 1989b. Investigations on carotenoids in
lichens. XIX. Carotenoids in lichens from various Italian environments. Phyton (Austria)
29:15-22.
carotenoids in lichens. XIX. Carotenoids in lichens of the tundra of Kamchatka region (Far
Egan, R. S. 1987. A fifth checklist of the lichen-forming and allied fungi of the continental
United States and Canada. The Bryologist 90:177-173.
372.
38:163-167.
70:370-374.
Skorepa, A. C. and J. A. Snider. 1967. Some unusual lower plants from Lusk Creek Canyon,
Valdson, L. R. G. 1976. Carotenoids as additional taxonomic characters in fungi, a review.
Fischer Verlag, Stuttgart-New York.

Table 1. Investigated species of Illinois lichens

<table>
<thead>
<tr>
<th>Species</th>
<th>Coll. No.</th>
<th>County</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladonia subterraneus (Tuck.) Elix & Hale</td>
<td>16567</td>
<td>Saline</td>
<td>Caras tomentosa</td>
</tr>
<tr>
<td>Cladonia caroliniana Schwein. ex Tuck.</td>
<td>16586</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Cladonia furcata (Huds.) Schrad.</td>
<td>16548</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Cladonia grayi G. K. Merr. ex Santel.</td>
<td>16549</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Cladonia robbinsii A. Evans</td>
<td>16594</td>
<td>Saline</td>
<td>sandy soil</td>
</tr>
<tr>
<td>Cladonia squamosa (Scop.) Hoffm.</td>
<td>16580</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Cladonia staphyli (Ach.) Vainio</td>
<td>16620</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Flavoparmelia baltimorense (Cylin. et Pers.) Halle</td>
<td>16608</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Flavoparmelia caerulea (L.) Hale</td>
<td>16554</td>
<td>Saline</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>Parmelia sulcata Tayl.</td>
<td>16623</td>
<td>DuPage</td>
<td>Fraxinus</td>
</tr>
<tr>
<td>Pelletiera canina (L.) Wild.</td>
<td>16583</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
<tr>
<td>Phaeophyscia rubropulchra (Hogel.) Moberg</td>
<td>16614</td>
<td>DuPage</td>
<td>Fraxinus</td>
</tr>
<tr>
<td>Physcia adipicera (Fr.) H. Oliv.</td>
<td>16622</td>
<td>DuPage</td>
<td>Fraxinus</td>
</tr>
<tr>
<td>Physcia milligrama Degel.</td>
<td>16621</td>
<td>DuPage</td>
<td>Fraxinus</td>
</tr>
<tr>
<td>Physcia stellaris (L.) Nylande</td>
<td>16625</td>
<td>DuPage</td>
<td>Fraxinus</td>
</tr>
<tr>
<td>Punctelia bolliana (Mull. Arg.) Krog</td>
<td>16626</td>
<td>DuPage</td>
<td>Quercus alba</td>
</tr>
<tr>
<td>Punctelia perreticulata (Maj.) Wilhelm et Ladd in od.</td>
<td>16617</td>
<td>Saline</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>Punctelia rudecta (Ach.) Krog</td>
<td>16552</td>
<td>Saline</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>Punctelia subulata (Nylande) Krog</td>
<td>16553</td>
<td>Saline</td>
<td>Juniperus virginiana</td>
</tr>
<tr>
<td>Xanthoparmelia somnifera (Cylin.) Halle</td>
<td>16571</td>
<td>Saline</td>
<td>sandstone</td>
</tr>
</tbody>
</table>

Figure 1. A-N, + R, R₁, and R₂

\[
\begin{align*}
A & \quad B \\
\begin{array}{c}
\text{C}_{22}H_{32}O_2 \\
\text{C}_{22}H_{32}O_2
\end{array} & \quad \begin{array}{c}
\text{C}_{22}H_{32}O_2 \\
\text{C}_{22}H_{32}O_2
\end{array} \\
F & \quad G \\
H & \quad J \\
K & \quad L \\
M & \quad N
\end{align*}
\]
<table>
<thead>
<tr>
<th>Carotenoid</th>
<th>Structure</th>
<th>Semi-systematic name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lichen species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canoparmelia texana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladina subetumis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia caroliniana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia furcata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia graco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia rubicula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia squamosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladonia streptis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavoparmelia bulbimorisonis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavoparmelia caperata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parmelia nicans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltigera canina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physoparmelia rubropilchra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physcia adscendens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physcia wilgeniana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physcia stellata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentelia bella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentelia peregrina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentelia ruberta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentelia subducta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacoparmelia bominensis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carotenoid</th>
<th>Major</th>
<th>Total</th>
<th>carotol(%)</th>
<th>mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2-Z</td>
<td></td>
<td></td>
<td>42.0</td>
<td>44.84</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>31.7</td>
<td>50.28</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>30.9</td>
<td>32.77</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>33.2</td>
<td>50.35</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>38.5</td>
<td>41.42</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>38.4</td>
<td>41.39</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>28.5</td>
<td>55.30</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>27.4</td>
<td>61.03</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>22.0</td>
<td>61.17</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>36.8</td>
<td>55.40</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>45.2</td>
<td>102.21</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>25.6</td>
<td>85.99</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>37.1</td>
<td>48.62</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>20.2</td>
<td>26.15</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>23.8</td>
<td>60.26</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>22.0</td>
<td>36.39</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>29.3</td>
<td>85.99</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>25.4</td>
<td>45.54</td>
</tr>
</tbody>
</table>